Model-based dose finding under model uncertainty using general parametric models.
نویسندگان
چکیده
The statistical methodology for the design and analysis of clinical Phase II dose-response studies, with related software implementation, is well developed for the case of a normally distributed, homoscedastic response considered for a single timepoint in parallel group study designs. In practice, however, binary, count, or time-to-event endpoints are encountered, typically measured repeatedly over time and sometimes in more complex settings like crossover study designs. In this paper, we develop an overarching methodology to perform efficient multiple comparisons and modeling for dose finding, under uncertainty about the dose-response shape, using general parametric models. The framework described here is quite broad and can be utilized in situations involving for example generalized nonlinear models, linear and nonlinear mixed effects models, Cox proportional hazards models, with the main restriction being that a univariate dose-response relationship is modeled, that is, both dose and response correspond to univariate measurements. In addition to the core framework, we also develop a general purpose methodology to fit dose-response data in a computationally and statistically efficient way. Several examples illustrate the breadth of applicability of the results. For the analyses, we developed the R add-on package DoseFinding, which provides a convenient interface to the general approach adopted here.
منابع مشابه
Speech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty
In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...
متن کاملUtilizing Decision Making Methods and Optimization Techniques to Develop a Model for International Facility Location Problem under Uncertainty
Abstract The purpose of this study is to consider an international facility location problem under uncertainty and present an integrated model for strategic and operational planning. The paper offers two methodologies for the location selection decision. First the extended VIKOR method for decision making problem with interval numbers is presented as a methodology for strategic evaluation of po...
متن کاملStrategic Bidding in a Pool-Based Electricity Market under Load Forecast Uncertainty
This paper proposes a method for determining the price bidding strategies of market participants consisting of Generation Companies (GENCOs) and Distribution Companies (DISCOs) in a day-ahead electricity market, while taking into consideration the load forecast uncertainty and demand response programs. The proposed algorithm tries to find a Pareto optimal point for a risk neutral participan...
متن کاملA multi-parametric approach for solid transportation problem with uncertainty fuzzy flexible conditions
The most convenient models of Solid Transportation (ST) problems have been justly considered a kind of uncertainty in their parameters such as fuzzy, grey, stochastic, etc. and usually, they suggest solving the main problems by solving some crisp equivalent model/models based on their proposed approach such as using ranking functions, embedding problems etc. Furthermore, there exist some shortc...
متن کاملOptimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach
Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 33 10 شماره
صفحات -
تاریخ انتشار 2014